Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.
نویسندگان
چکیده
We further investigated the role of the Arabidopsis CBF regulatory genes in cold acclimation, the process whereby certain plants increase in freezing tolerance upon exposure to low temperature. The CBF genes, which are rapidly induced in response to low temperature, encode transcriptional activators that control the expression of genes containing the C-repeat/dehydration responsive element DNA regulatory element in their promoters. Constitutive expression of either CBF1 or CBF3 (also known as DREB1b and DREB1a, respectively) in transgenic Arabidopsis plants has been shown to induce the expression of target COR (cold-regulated) genes and to enhance freezing tolerance in nonacclimated plants. Here we demonstrate that overexpression of CBF3 in Arabidopsis also increases the freezing tolerance of cold-acclimated plants. Moreover, we show that it results in multiple biochemical changes associated with cold acclimation: CBF3-expressing plants had elevated levels of proline (Pro) and total soluble sugars, including sucrose, raffinose, glucose, and fructose. Plants overexpressing CBF3 also had elevated P5CS transcript levels suggesting that the increase in Pro levels resulted, at least in part, from increased expression of the key Pro biosynthetic enzyme Delta(1)-pyrroline-5-carboxylate synthase. These results lead us to propose that CBF3 integrates the activation of multiple components of the cold acclimation response.
منابع مشابه
Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance.
Many plants, including Arabidopsis, show increased resistance to freezing after they have been exposed to low nonfreezing temperatures. This response, termed cold acclimation, is associated with the induction of COR (cold-regulated) genes mediated by the C-repeat/drought-responsive element (CRT/DRE) DNA regulatory element. Increased expression of Arabidopsis CBF1, a transcriptional activator th...
متن کاملA prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis.
The Arabidopsis CBF cold response pathway has a central role in cold acclimation, the process whereby plants increase in freezing tolerance in response to low nonfreezing temperatures. Here we examined the changes that occur in the Arabidopsis metabolome in response to low temperature and assessed the role of the CBF cold response pathway in bringing about these modifications. Of 434 metabolite...
متن کاملICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.
Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a sc...
متن کاملMutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.
The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/C...
متن کاملCBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis.
CBF/DREB1 (C-repeat-binding factor/dehydration responsive element-binding factor 1) genes encode a small family of transcriptional activators that have been described as playing an important role in freezing tolerance and cold acclimation in Arabidopsis. To specify this role, we used a reverse genetic approach and identified a mutant, cbf2, in which the CBF2/DREB1C gene was disrupted. Here, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 124 4 شماره
صفحات -
تاریخ انتشار 2000